
Chapter 4 

Orthogonality 

4.1 Orthogonality of the Four Subspaces 

Two vectors are orthogonal when their dot product is zero: v • w = 0 or v T w = o. This 
chapter moves to orthogonal subspaces and orthogonal bases and orthogonal matrices. 
The vectors in two subspaces, and the vectors in a basis, and the vectors in the columns, 
all pairs will be orthogonal. Think of a2 + b2 = c2 for a right triangle with sides v and w . 
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The right side is (v + w)T(v + w). This equals vTv + wTw when vTw = wTv = O. 

Subspaces entered Chapter 3 to throw light on Ax = b. Right away we needed the 
column space (for b) and the nullspace (for x). Then the light turned onto AT, uncovering 
two more subspaces. Those four fundamental subspaces reveal what a matrix really does. 

A matrix multiplies a vector: A times x. At the first level this is only numbers. At 
the second level Ax is a combination of column vectors. The third level shows subspaces. 
But I don't think you have seen the whole picture until you study Figure 4.2. It fits the 
subspaces together, to show the hidden reality of A times x. The 90° angles between 
subspaces are new-and we have to say what those right angles mean. 

The row space is perpendicular to the nullspace. Every row of A is perpendicular to 
every solution of Ax = O. That gives the 90° angle on the left side of the figure. This 
perpendicularity of subspaces is Part 2 of the Fundamental Theorem of Linear Algebra. 

The column space is perpendicular to the nullspace of AT. When b is outside the 
column space-when we want to solve Ax = b and can't do it-then this nullspace of 
AT comes into its own. It contains the error e = b - Ax in the "least-squares" solution. 
Least squares is the key application of linear algebra in this chapter. 

Part 1 of the Fundamental Theorem gave the dimensions of the subspaces. The row 
and column spaces have the same dimension r (they are drawn the same size). The two 
nullspaces have the remaining dimensions n - rand m - r. Now we will show that 
the row space and nullspace are orthogonal subspaces inside Rn. 
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196 Chapter 4. Orthogonality 

DEFINITION Two subspaces V and W of a vector space are orthogonal if every vector v 
in V is perpendicular to every vector w in W: 

Ortbogonalsllb~paees', V T W = 0 for all v in V and all w in W. " 

Example 1 The floor of your room (extended to infinity) is a subspace V. The line where 
two walls meet is a subspace W (one-dimensional). Those subspaces are orthogonal. Every 
vector up the meeting line is perpendicular to every vector in the floor. 

Example 2 Two walls look perpendicular but they are not orthogonal subspaces! The 
meeting line is in both V and W-and this line is not perpendicular to itself. Two planes 
(dimensions 2 and 2 in R 3) cannot be orthogonal subspaces. 

When a vector is in two orthogonal subspaces, it must be zero. It is perpendicular to 
itself. It is v and it is w, so V T V = O. This has to be the zero vector. 
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Figure 4.1: Orthogonality is impossible when dim V +dim W > dimension of whole space. 

The crucial examples for linear algebra come from the fundamental subspaces. Zero is 
the only point where the nullspace meets the row space. More than that, the nullspace and 
row space of A meet at 90°. This key fact comes directly from Ax = 0: 

. - - -. . 
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To see why x is perpendicular to the rows, look at Ax = O. Each row multiplies x: 

The first equation says that row 1 is perpendicular to x. The last equation says that row m is 
perpendicular to x. Every row has a zero dot product with x. Then x is also perpendicular 
to every combination of the rows. The whole row space C (AT) is orthogonal to N (A). 
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Here is a second proof of that orthogonality for readers who like matrix shorthand. 
The vectors in the row space are combinations AT y of the rows. Take the dot product 
of AT y with any x in the nUllspace. These vectors are perpendicular: 

Nullspace and Row space (2) 

We like the first proof. You can see those rows of A multiplying x to produce zeros in 
equation (1). The second proof shows why A and AT are both in the Fundamental Theorem. 
AT goes with y and A goes with x. At the end we used Ax = O. 

Example 3 The rows of A are perpendicular to x = (1,1, -1) in the nullspace: 

1+3-4=0 
gives the dot products 

5+2-7=0 

Now we tum to the other two subspaces. In this example, the column space is all of R2. 
The nullspace of AT is only the zero vector (orthogonal to every vector). The columns of 
A and nullspace of AT are always orthogonal subspaces . 
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Apply the original proof to AT. Its nullspace is orthogonal to its row space-and the row 
space of AT is the column space of A. Q.E.D. 

For a visual proof, look at AT y = O. Each column of A multiplies y to give 0: 

AT Y = [(COlu~.n I)T] [Y] = [~] . 
(column n)T 0 

(3) 

The dot product of y with every column of A is zero. Then y in the left nullspace is 
perpendicular to each column-and to the whole column space. 

Orthogonal Complements 

Important The fundamental subspaces are more than just orthogonal (in pairs). 
Their dimensions are also right. Two lines could be perpendicular in R 3 , but those lines 
could not be the row space and nullspace of a 3 by 3 matrix. The lines have dimensions 1 
and 1, adding to 2. The correct dimensions rand n - r must add to n = 3. 

The fundamental subspaces have dimensions 2 and 1, or 3 and O. Those subspaces are 
not only orthogonal, they are orthogonal complements. 

DEFINITION The orthogonal complement of a subspace V contains every vector that is 
perpendicular to V. This orthogonal subspace is denoted by V..L. (pronounced" V perp"). 

By this definition, the nullspace is the orthogonal complement of the row space. 
Every x that is perpendicular to the rows satisfies Ax = O. 
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Figure 4.2: Two pairs of orthogonal subspaces. The dimensions add to n and add to m. 
This is an important picture-one pair of subspaces is in Rn and one pair is in Rm. 

The reverse is also true. If v is orthogonal to the nullspace, it must be in the row 
space. Otherwise we could add this v as an extra row of the matrix, without changing its 
nUllspace. The row space would grow, which breaks the law r + (n - r) = n. We conclude 
that the nullspace complement N (A)l. is exactly the row space C (AT). 

The left nullspace and column space are orthogonal in Rm , and they are orthogonal 
complements. Their dimensions rand m - r add to the full dimension m. I 
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Part 1 gave the dimensions of the subspaces. Part 2 gives the 90° angles between them. 
The point of "complements" is that every x can be split into a row space component x r 
and a nullspace component x n. When A multiplies x = x r + X n, Figure 4.3 shows what 
happens: 

The nullspace component goes to zero: Ax n = O. 

The row space component goes to the column space: Ax r = Ax. 

Every vector goes to the column space! Multiplying by A cannot do anything else. 
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Figure 4.3: This update of Figure 4.2 shows the true action of A on x - xr + Xn. 
Row space vector x r to column space, nullspace vector x n to zero. 

More than that: Every vector b in the column space comes from one and only one vector 
in the row space. Proof: IfAxr = Ax~, the difference Xr - x~ is in the nUllspace. 
It is also in the row space, where x r and x~ came from. This difference must be the zero 
vector, because the nullspace and row space are perpendicular. Therefore x r = x~. 

There is an r by r invertible matrix hiding inside A, if we throwaway the two nUllspaces. 
From the row space to the column space, A is invertible. The "pseudoinverse" will invert 
it in Section 7.3. 

Example 4 Every diagonal matrix has an r by r invertible submatrix: 

[

3 0 0 0 0] 
A= 0 5 0 0 0 

o 0 0 0 0 
contains the submatrix [3 0] o 5 . 

The other eleven zeros are responsible for the nullspaces. The rank of B is also r = 2: 

2 3 4 5] I 
2 4 5 6 contains [ 1 
245 6 

! ] in the pivot rows and columns. 

Every A becomes a diagonal matrix, when we choose the right bases for Rn and Rm. 
This Singular Value Decomposition has become extremely important in applications. 
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Combining Bases from Subspaces 

What follows are some valuable facts about bases. They were saved until now-when we 
are ready to use them. After a week you have a clearer sense of what a basis is (linearly 
independent vectors that span the space). Normally we have to check both of these proper­
ties. When the count is right, one property implies the other: 

Starting with the correct number of vectors, one property of a basis produces the other. 
This is true in any vector space, but we care most about Rn. When the vectors go into the 
columns of an n by n square matrix A, here are the same two facts: 

:.< ••. ~~~.e~~~~.~in~T~~~~.lf'rio~ .... bissOI~"I~.· 

Uniqueness implies existence and existence implies uniqueness. Then A is invertible. If 
there are no free variables, the solution x is unique. There must be 11 pivots. Then back 
substitution solves Ax = b (the solution exists). 

Starting in the opposite direction, suppose Ax = b can be solved for every b 
(existence of solutions). Then elimination produced no zero rows. There are 11 pivots and 
no free variables. The nullspace contains only x = 0 (uniqueness of solutions). 

With bases for the row space and the nullspace, we have r + (n - r) = n vectors, 
This is the right number. Those 11 vectors are independent.2 Therefore they span Rn. 

Each x is the sum x r + X n of a row space vector x r and a nullspace vector x n . 

The splitting in Figure 4.3 shows the key point of orthogonal complements-the dimen­
sions add to n and all vectors are fully accounted for. 

Example5 ForA = [; ~] split X = [ ~ ] intoxr +xn = [ ~ ] + [ -~ l 
The vector (2,4) is in the row space. The orthogonal vector (2, -1) is in the nullspace. 

The next section will compute this splitting for any A and x, by a projection. 

2If a combination of all n vectors gives Xr + Xn = 0, then Xr = -Xn is in both subspaces. 
So x r = x n = O. All coefficients of the row space basis and nullspace basis must be zero--which 
proves independence of the n vectors together. 
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• REVIEW OF THE KEY IDEAS • 

1. Subspaces V and Ware orthogonal if every v in V is orthogonal to every w in W. 

2. V and Ware "orthogonal complements" if W contains all vectors perpendicular to 
V (and vice versa). Inside Rn, the dimensions of complements V and W add to n. 

3. The nullspace N (A) and the row space C (AT) are orthogonal complements, from 
Ax = O. Similarly N(AT) and C(A) are orthogonal complements. 

4. Any n independent vectors in Rn will span Rn. 

5. Every x in Rn has a nullspace component Xn and a row space component Xr. 

• WORKED EXAMPLES • 

4.1 A Suppose S is a six-dimensional subspace of nine-dimensional space R9. 

(a) What are the possible dimensions of subspaces orthogonal to S? 

(b) What are the possible dimensions of the orthogonal complement S...L of S? 

(c) What is the smallest possible size of a matrix A that has row space S? 

(d) What is the shape of its nullspace matrix N? 

Solution 

(a) If S is six-dimensional in R9 , subspaces orthogonal to S can have dimensions 0,1,2,3. 

(b) The complement S...L is the largest orthogonal subspace, with dimension 3. 

(c) The smallest matrix A is 6 by 9 (its six rows are a basis for S). 

(d) Its nullspace matrix N is 9 by 3. The columns of N contain a basis for S...L. 

If a new row 7 of B is a combination of the six rows of A, then B has the same row 
space as A. It also has the same nullspace matrix N. The special solutions s 1 , S 2, S 3 will 
be the same. Elimination will change row 7 of B to all zeros. 

4.1 B The equation x - 3y - 4z = ° describes a plane P in R3 (actually a subspace). 

(a) The plane P is the nullspace N (A) of what I by 3 matrix A? 

(b) Find a basis SI,S2 of special solutions of x - 3y - 4z ~ ° (these would be the 
columns of the nullspace matrix N). 
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(c) Also find a basis for the line pJ.. that is perpendicular to P. 

(d) Split v = (6,4,5) into its nullspace component Vn in P and its row space component 
. pJ.. Vr In . 

Solution 

(a) The equation x - 3y - 4z = 0 is Ax = 0 for the I by 3 matrix A = [1 - 3 - 4]. 

(b) Columns 2 and 3 are free (the only pivot is 1). The special solutions with free vari­
ables 1 and 0 are Sl = (3,1,0) and S2 = (4,0,1) in the plane P = N(A). 

(c) The row space of A is the line P J.. in the direction of the row z = (1, -3, -4). 

(d) To split v into Vn + Vr = (CISI + C2S2) + C3Z, solve for CI = 1, C2 = 1, C3 = -1. 

[ : ] = [~ ~ -~] [ ~] 
5 0 I -4 -1 

Vn=SI+S2=(7,1,1) isin P=N(A) 
vr=-s3=(-1,3,4) isin PJ..=C(AT). 
v = (6,4,5) equals (7,1,1) + (-1,3,4) 

This method used a basis for each subspace combined into an overall basis Sl, S2, z. 
Section 4.2 will also project v onto a subspace S. There we will not need a basis for the 
perpendicular subspace S J.. • 

Problem Set 4.1 

Questions 1-12 grow out of Figures 4.2 and 4.3 with four subspaces. 

1 Construct any 2 by 3 matrix of rank one. Copy Figure 4.2 and put one vector in each 
subspace (two in the nullspace). Which vectors are orthogonal? 

2 Redraw Figure 4.3 for a 3 by 2 matrix of rank r = 2. Which subspace is Z (zero 
vector only)? The nullspace part of any vector x in R2 is Xn = __ 

3 Construct a matrix with the required property or say why that is impossible: 

(a) Column space contains [-i] and [-~], nullspace contains [i] 
(b) Row space contains Li] and [-~], nullspace contains [i] 
(c) Ax = U] has a solution and AT [g] = [8] 
(d) Every row is orthogonal to every column (A is not the zero matrix) 

(e) Columns add up to a column of zeros, rows add to a row of 1 'so 

4 If AB = 0 then the columns of B are in the of A. The rows of A are in the 
__ of B. Why can't A and B be 3 by 3 matrices of rank 2? 
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5 (a) If Ax =bhasasolutionandATy =O,is(yTx = 0) or (yTb =O)? 

(b) If AT y = (1,1,1) has a solution and Ax = 0, then __ 

6 This system of equations Ax = b has no solution (they lead to 0 = 1): 

x + 2y + 2z 

2x + 2y + 3z 

3x + 4y + 5z 

5 

5 

9 
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Find numbers YI, Y2, Y3 to multiply the equations so they add to 0 = 1. You have 
found a vector y in which subspace? Its dot product y T b is 1, so no solution x. 

7 Every system with no solution is like the one in Problem 6. There are numbers 
YI, .•• , Ym that mUltiply the m equations so they add up to 0 = 1. This is called 
Fredholm's Alternative: 

Exactly one of these problems has a solution 

Ax = b OR AT y = 0 with y Tb = 1. 

If b is not in the column space of A, it is not orthogonal to the nUllspace of AT. 
Multiply the equations Xl - X2 = 1 and X2 - X3 = 1 and Xl - X3 = 1 by numbers 
Yt. Y2, Y3 chosen so ~hat the equations add up to 0 = 1. 

8 In Figure 4.3, how do we know that AXr is equal to Ax? How do we know that this 
vector is in the column space? If A = [f fJ and x = [A] what is x r ? 

9 If AT Ax = 0 then Ax = O. Reason: Ax is in the nullspace of AT and also in the 
__ of A and those spaces are . Conclusion: AT A has the same nullspace 
as A. This key fact is repeated in the next section. 

10 Suppose A is a symmetric matrix (AT = A). 

(a) Why is its column space perpendicular to its nullspace? 

(b) If Ax = 0 and Az = 5z, which subspaces contain these "eigenvectors" x 
and z? Symmetri~ matrices have perpendicular eigenvectors x T z = O. 

11 (Recommended) Draw Figure 4.2 to show each subspace correctly for 

A = [~ ~ ] and B = [~ ~]. 

12 Find the pieces x r and x n and draw Figure 4.3 properly if 

[1 -1] 
A = ~ ~ and x = [~]. 
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Questions 13-23 are about orthogonal subspaces. 

13 Put bases for the subspaces V and W into the columns of matrices Y and W. Explain 
why the test for orthogonal subspaces can be written yT W = zero matrix. This 
matches v T w = 0 for orthogonal vectors. 

14 The floor V and the wall Ware not orthogonal subspaces, because they share a 
nonzero vector (along the line where they meet). No planes V and W in R3 can be 
orthogonal! Find a vector in the column spaces of both matrices: 

and 
B= [~ n 

This will be a vector Ax and also Bx. Think 3 by 4 with the matrix [A B]. 

15 Extend Problem 14 to a p-dimensional subspace V and a q-dimensional subspace 
W of Rn. What inequality on p + q guarantees that V intersects W in a nonzero 
vector? These subspaces cannot be orthogonal. 

16 Prove that every y in N (AT) is perpendicular to every Ax in the column space, using 
the matrix shorthand of equation (2). Start from AT y = O. 

17 If S is the subspace of R 3 containing only the zero vector, what is S..l? If S is 
spanned by (1, 1, 1), what is S..l ? If S is spanned by (1, 1, 1) and (1, 1, -1), what is 
a basis for S..l ? 

18 Suppose S only contains two vectors (1,5, 1) and (2,2,2) (not a subspace), Then 
S..l is the nullspace of the matrix A = . S..l is a subspace even if S is not. 

19 Suppose L is a one-dimensional subspace (a line) in R3. Its orthogonal complement 
L..l is the perpendicular to L, Then (L..l)..l is a perpendicular to L ..l, 
In fact (L ..l)..l is the same as __ 

20 Suppose V is the whole space R4. Then V..l contains only the vector __ ' Then 
(V..l)..l is . So (V..l)..l is the same as __ 

21 Suppose S is spanned by the vectors (1,2,2,3) and (1,3,3,2), Find two vectors 
that span S..l, This is the same as solving Ax = 0 for which A? 

22 If P is the plane of vectors in R4 satisfying Xl + X2 + X3 + X4 = 0, write a basis 
for p..l, Construct a matrix that has P as its nullspace. 

23 If a subspace S is contained in a subspace V, prove that S..l contains V..l, 
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Questions 24-30 are about perpendicular columns and rows. 

24 Suppose an n by n matrix is invertible: AA-1 = 1. Then the first column of A-I is 
orthogonal to the space spanned by which rows of A? 

25 Find AT A if the columns of A are unit vectors, all mutually perpendicular. 

26 Construct a 3 by 3 matrix A with no zero entries whose columns are mutually per­
pendicular. Compute AT A. Why is it a diagonal matrix? 

27 The lines 3x + y = bi and 6x + 2y = b2 are . They are the same line 
if . In that case (b I , b2) is perpendicular to the vector . The nullspace 
of the matrix is the line 3x + y = . One particular vector in that nullspace is 

28 Why is each of these statements false? 

(a) (1, 1, 1) is perpendicular to (1, 1, -2) so the planes x + y + z = ° and x + y -
2z = ° are orthogonal subspaces. 

(b) The subspace spanned by (I, 1,0,0,0) and (0,0,0, 1, 1) is the orthogonal com­
plement ofthe subspace spanned by (I, -1,0,0,0) and (2, -2, 3, 4, -4). 

(c) Two subspaces that meet only in the zero vector are orthogonal. 

29 Find a matrix with v'= (1,2,3) in the row space and column space. Find another 
matrix with v in the nullspace and column space. Which pairs of subspaces can v 
not be in? 

Challenge Problems 

30 Suppose A is 3 by 4 and B is 4 by 5 and AB = 0. So N (A) contains C (B). 
Prove from the dimensions of N (A) and C (B) that rank(A) + rank(B) < 4. 

31 The command N = nulI(A) will produce a basis for the nullspace of A. Then the 
command B = null(N') will produce a basis for the of A. 

32 Suppose I give you four nonzero vectors r, n, c, I in R 2 • 

(a) What are the conditions for those to be bases for the four fundamental sub­
spaces C(AT), N(A), C(A), N(AT) of a 2 by 2 matrix? 

(b) What is one possible matrix A? 

33 Suppose I give you eight vectors r I, r2, nl, n2, CI, C2, 11,12 in R4. 

(a) What are the conditions for those pairs to be bases for the four fundamental 
subspaces of a 4 by 4 matrix? 

(b) What is one possible matrix A? 
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4.2 Projections 

May we start this section with two questions? (In addition to that one.) The first ques­
tion aims to show that projections are easy to visualize. The second question is about 
"projection matrices"-symmetric matrices with p 2 = P. The projection of b is P b. 

1 What are the projections of b = (2,3,4) onto the z axis and the xy plane? 

2 What matrices produce those projections onto a line and a plane? 

When b is projected onto a line, its projection p is the part of b along that line. 
If b is projected onto a plane, p is the part in that plane. The projection p is P b. 

The projection matrix P multiplies b to give p. This section finds p and P. 

The projection onto the z axis we call PI' The second projection drops straight down to 
the xy plane. The picture in your mind should be Figure 4.4. Start with b = (2,3,4). 
One projection gives PI = (0,0,4) and the other gives P2 = (2,3,0). Those are the parts 
of b along the z axis and in the xy plane. 

The projection matrices PI and P2 are 3 by 3. They multiply b with 3 components 
to produce p with 3 components. Projection onto a line comes from a rank one matrix. 
Projection onto a plane comes from a rank two matrix: 

Onto the z axis: PI = [~ ~ ~] 
001 

! 

Onto the xy plane: 

PI picks out the z component of every vector. P2 picks out the x and y components. 
\ 

To find the projections PI and P2 of b, multiply b by PI and P2 (small p for the vector, 
capital P for the matrix that produces it): 

In this case the projections PI and P2 are perpendicular. The xy plane and the z axis 
are orthogonal subs paces, like the floor of a room and the line between two walls. 

Figure 4.4: The projections PI = PIb and P2 = P2b onto the z axis and the xy plane. 
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More than that, the line and plane are orthogonal complements. Their dimensions add 
to 1 + 2 = 3. Every vector b in the whole space is the sum of its parts in the two subspaces. 
The projections PI and P2 are exactly those parts: 

The vectors give PI + P2 = b. The matrices give PI + P2 = I. (1) 

This is perfect. Our goal is reached-for this example. We have the same goal for any line 
and any plane and any n-dimensional subspace. The object is to find the part P in each 
subspace, and the projection matrix P that produces that part p = P b. Every subspace 
of Rm has its own m by m projection matrix. To compute P, we absolutely need a good 
description of the subspace that it projects onto. 

The best description of a subspace is a basis. We put the basis vectors into the columns 
of A. Now we are projecting onto the column space of A! Certainly the z axis is the 
column space of the 3 by 1 matrix A 1. The xy plane is the column space of A2 • That plane 
is also the column space of A3 (a subspace has many bases): 

Our problem is to project -any b onto the column space of any m by n matrix. 
Start with a line (dimension n = 1). The matrix A has only one column. Call it a. 

Projection Onto a Line 

A line goes through the origin in the direction of a = (at. . .. , am). Along that line, we 
want the point p closest to b = (b I , . .. , bm ). The key to projection is orthogonality: 
The line from b to P is perpendicular to the vector a. This is the dotted line marked 
e for error in Figure 4.5-which we now compute by algebra. 

The projection P is some multiple of a. Call it P = xa = "x hat" times a. Computing 
this number x will give the vector p. Then from the formula for p, we read off the projec­
tion matrix P. These three steps will lead to all projection matrices: find x, then find the 
vector p, then find the matrix P. 

The dotted line b - p is e = b - xa. It is perpendicular to a-this will determine X. 
Use the fact that b - p is perpendicular to a when their dot product is zero: 

Projecting b onto a, error e = b - xa 

; a . (b - x a) = 0 or a· b - x a • a = 0 
,,! 

....... a.b aTb 
x=--=-

a.a aTa' 

The multiplication a Tb is the same as a . b. Using the transpose is better, because it 
applies also to matrices. Our formula x = aT b I aT a gives the projection p = x a. 
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p=Ax 
= A(AT A)-l ATb 

=Pb 

Figure 4.5: The projection p of b onto a line and onto S = column space of A. 
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Special case 1: If b = a then x = 1. The projection of a onto a is itself. Pa = a. 

',,' Special case 2: If b is perpendicular to a then aT b = O. The projection is p = O. 

Example 1 Project b = [ : ] onto a = [ ~ ] to find p = xa in Figure 4.5. 

Solution The number x is the ratio of aT b = 5 to aT a = 9. So the projection is p = ~a. 
The error vector between band p is e b - p. Those vectors p and e will add to 
b = (1,1,1): 

p = ~a = (~, l~, 1~) and e = b _ p = (~, _~, _~ ) . 

The error e should be perpendicular to a = (1,2, 2) and it is: eTa = ~ - ~ - ~ = O. 
Look at the right triangle of b, p, and e. The vector b is split into two parts-its 

component along the line is p, its perpendicular part is e. Those two sides of a right 
triangle have length II b II cOS () and II b II sin (). Trigonometry matches the dot product: 

p = ::! a has length lip II = lIa II ::: :::" e lIa II = lib II cos II. (3) 

The dot product is a lot simpler than getting involved with cos () and the length of b. 
The example has square roots in cos e = 5/3v'3 and IIbll = v'3. There are no square 
roots in the projection p = 5a/9. The good way to 5/9 is bTa/aTa. 

Now comes the projection matrix. In the formula for p, what matrix is multiplying b? 
You can see the matrix better if the number x is on the right side of a: 

Prpj~4tio¥t ',' 
, "lDa~F~, :]>;, ,), 
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P is a column times a row! The column is a, the row is aT. Then divide by the number 
aT a. The projection matrix P is m by m, but its rank is one. We are projecting onto a 
one-dimensional subspace, the line through a. That is the column space of P. 

Example 2 
T 

Find the projection matrix P = a~ onto the line through a = [~]. 
a a 2 

Solution Multiply column a times row aT and divide by aT a = 9: 

Projection matrix T 1 [1] 1 [1 P = a~ = _ 2 [1 2 2] = - 2 
aa 9 2 9 2 

2 2] 
4 4 . 
4 4 

This matrix projects any vector b onto a. Check p = P b for b = (1, 1, 1) in Example 1: 

p = Pb = ~ [~ ~ ~] [~] = ~ [:0] which is correct. 
9 2441 910 

If the vector a is doubled, the matrix P stays the same. It still projects onto the same line. 
If the matrix is squared, p2 equals P. Projecting a second time doesn't change anything, 
so p2 = P. The diagonal entries of P add up to b(l + 4 + 4) = 1. 

The matrix 1 - P should be a projection too. It produces the other side e of the 
triangle-the perpendicular part of b. Note that (1 - P)b equals b - p which is e in the 
left nullspace. When P projects onto one subspace, 1- P projects onto the perpendicular 
subspace. Here 1 - P projects onto the plane perpendicular to a. 

Now we move beyond projection onto a line. Projecting onto an n-dimensional 
subspace of Rm takes more effort. The crucial formulas will be collected in equations 
(5)-(6)-(7). Basically you need to remember those three equations. 

Projection Onto a Subspace 

Start with n vectors aI, ... ,an in Rm. Assume that these a's are linearly independent. 

Problem: Find the combination p = xlal + ... + xnan closest to a given vector b. 
We are projecting each b in Rm onto the subspace spanned by the a's, to get p. 

With n = 1 (only one vector a 1) this is projection onto a line. The line is the column space 
of A, which has just one column. In general the matrix A has n columns aI, ... , an. 

The combinations in Rm are the vectors Ax in the column space. We are looking for 
the particular combination p = Ax (the projection) that is closest to b. The hat over x 
indicates the best choice x, to give the closest vector in the column space. That choice is 
aT b / a T a when n = 1. For n > 1, the best x is to be found now. 

We compute projections onto n-dimensional subspaces in three steps as before: 
Find the vector x,jind the projection p = A x,jind the matrix P. 

The key is in the geometry! The dotted line in Figure 4.5 goes from b to the near­
est point Ax in the subspace. This error vector b - Ax is perpendicular to the subspace. 
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The error b - Ax makes a right angle with all the vectors aI, ... , an. The n right angles 
give the n equations for x: 

aT(b-Ax) =0 

or (4) 

a!(b - Ax) = 0 

The matrix with those rows aT is AT. The n equations are exactly AT(b - Ax) = O. 
Rewrite AT (b - Ax) = 0 in its famous form AT Ax = AT b. This is the equation for x, 

and the coefficient matrix is AT A. Now we can find x and p and P, in that order: 

Compare with projection onto a line, when the matrix A has only one column a: 

Those formulas are identical with (5) and (6) and (7). The number aTa becomes the 
matrix AT A. When it is', a number, we divide by it. When it is a matrix, we invert it. 
The new formulas contain (AT A)-l instead of l/aTa. The linear independence of the 
columns aI, ... ,an will guarantee that this inverse matrix exists. 

The key step was AT(b - Ax) = O. We used geometry (e is perpendicular to all the 
a's). Linear algebra gives this "normal equation" too, in a very quick way: 

1. Our subspace is the column space of A. 

2. The error vector b - Ax is perpendicular to that column space. 

3. Therefore b - Ax is in the nullspace of AT. This means AT(b - Ax) = O. 

The left nullspace is important in projections. That nullspace of AT contains the error vector 
e = b - Ax. The vector b is being split into the projection p and the error e = b - p. 
Projection produces a right triangle (Figure 4.5) with sides p, e, and b. 
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Example 3 If A = [1 iJ and b = [ g ] find x and p and P. 

Solution Compute the square matrix AT A and also the vector ATb: 

1 
1 

Now solve the nonnal equation AT Ax = ATb to find x: 

1 
1 

The combination p = Ax is the projection of b onto the column space of A: 
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(8) 

p = 5 m -3 m = Ul The error is e = b - p = H l (9) 

Two checks on the calculation. First, the error e = (1, -2, 1) is perpendicular to both 
columns (1,1,1) and (0,1,2). Second, the final P times b = (6,0,0) correctly gives 
p = (5,2, -1). That solves the problem for one particular b. 

To find p = P b for every b, compute P = A(AT A)-1 AT. The detenninant of AT A is 
15 - 9 = 6; then (AT A)-1 is easy. Multiply A times (AT A)-1 times AT to reach P: 

(AT A)-1 = ~ [ 5 -3] 
6 -3 3 

and P = - 2 1 [ 5 

6 -1 

2 -1] 
22. 
2 5 

(10) 

We must have p 2 = P, because a second projection doesn't change the first projection. 

Warning The matrix P = A(AT A)-1 AT is deceptive. You might try to split (AT A)-1 
into A -1 times (AT) -1. If you make that mistake, and substitute it into P, you will find 
P = AA-1 (AT)-1 AT. Apparently everything cancels. This looks like P = I, the identity 
matrix. We want to say why this is wrong. 

The matrix A is rectangular. It has no inverse matrix. We cannot split (AT A)-1 into 
A -1 times (AT) -1 because there is no A -1 in the first place. 

In our experience, a problem that involves a rectangular matrix almost always leads to 
AT A. When A has independent columns, AT A is invertible. This fact is so crucial that we 
state it clearly and give a proof. 

·ATA.iS'inveitibleit~ritl:ti~l~itA .. ·haSJilleal'1Yi~d~pelld~~tcottimn~ .•. ~ 

Proof AT A is a square matrix (n by n). For every matrix A, we will now show that 
AT A has the same nullspace as A. When the columns of A are linearly independent, its 
nullspace contains only the zero vector. Then AT A, with this same nullspace, is invertible. 
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Let A be any matrix. If x is in its nullspace, then Ax = O. Multiplying by AT gives 
AT Ax = O. So x is also in the nullspace of AT A. 

Now start with the nullspace of AT A. From AT Ax = 0 we must prove Ax = O. We 
can't multiply by (AT)-l, which generally doesn't exist. Just multiply by x T: 

This says: If AT Ax = 0 then Ax has length zero. Therefore Ax = O. Every vector x in 
one nullspace is in the other nUllspace. If AT A has dependent columns, so has A. If AT A 
has independent columns, so has A. This is the good case: 

When A has independent columns, A T A is square, symmetric, and invertible. 

To repeat for emphasis: AT A is (n by m) times (m by n). Then AT A is square (n by n). 
It is symmetric, because its transpose is (AT A)T = AT(AT)T which equals AT A. We just 
proved that AT A is invertible-provided A has independent columns. Watch the difference 
between dependent and independent columns: 

AT A ATA AT A ATA 

n ~ ~J[i ~] = [; ~J [~ ~ n [l n = [; !J 
dependent singular indep. invertible 

Very brief summary To find the projection p = xlal + ... + xnan , solve AT Ax = ATb. 
This gives x. The projection is Ax and the error is e = b - p = b - Ax. The projection 
matrix P = A(AT A)-l AT gives p = Pb. 

This matrix satisfies p2 = P. The distance/rom b to the subspace is lie II. 

, 
• REVIEW OF THE KEY IDEAS • 

1. The projection of b onto the line through a is p = ax = a(aTb/aTa). 

2. The rank one projection matrix P = aa T / a T a multiplies b to produce p. 

3. Projecting b onto a subspace leaves e = b - p perpendicular to the subspace. 

4. When A has full rank n, the equation AT Ax = ATb leads to x and p = Ax. 

5. The projection matrix P = A(AT A)-l AT has p T = P and p2 = P. 
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• WORKED EXAMPLES • 

4.2 A Project the vector b = (3,4,4) onto the line through a = (2,2, 1) and then 
onto the plane that also contains a* = (1,0,0). Check that the first error vector b - P 
is perpendicular to a, and the second error vector e * = b - p * is also perpendicular to a * . 

Find the 3 by 3 projection matrix P onto that plane of a and a*. Find a vector whose 
projection onto the plane is the zero vector. 

Solution The projection of b = (3,4,4) onto the line through a = (2,2,1) is p = 2a: 

Onto a line 
aTb 18 

p = aTaa = 9(2,2,1) = (4,4,2). 

The error vector e = b - p = (-1,0,2) is perpendicular to a. So p is correct. 
The plane of a = (2,2,1) and a* = (1, 0, 0) is the column space of A = [a a*]: 

(AT A)-1 = ~ [ 1 -2] 
5 -2 9 P = ° .8 .4 [1 ° 0] 

° .4 .2 

Then p* = P b = (3,4.8,2.4). The error e * = b - p* = (0, -.8, 1.6) is perpendicular 
to a and a *. This e * is in the nullspace of P and its projection is zero! Note P 2 = P. 

4.2 B Suppose your pulse is measured at x = 70 beats per minute, then at x = 80, 
then at x = 120. Those three equations Ax = b in one unknown have AT = [1 1 1] and 
b = (70,80, 120). The best x is the of 70,80,120. Use calculus and projection: 

1. Minimize E = (x - 70)2 + (x - 80)2 + (x - 120f by solving dE/ dx = 0. 

2. Project b = (70,80,120) onto a = (1, 1, 1) to find x = aTb/aTa. 

Solution The closest horizontal line to the heights 70, 80,120 is the average x = 90: 

dE ...... 70 + 80 + 120 
-d = 2(x -70) + 2(x - 80) + 2(x - 120) = ° gives x = 

x 3 

Projection : x = a:b = (1, 1, I)T(~O, 80,120) = 70 + 80 + 120 = 90. 
a a (1,1,1) (1, 1, 1) 3 

4.2 C In recursive least squares, a fourth measurement 130 changes xold to xnew. 
Compute xnew and verify the update formula xnew = Xold + *(130 - Xold). 

Going from 999 to 1000 measurements, xnew = Xold + 10
1
00 (blOOO -xold) would only 

need Xold and the latest value blOOO • We don't have to average al11000 numbers! 
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Solution The new measurement b4 = 130 adds a fourth equation and x is updated to 100. 
You can average b 1 , b2 , b3 , b4 or combine the average of b1 , b2 , b3 with b4 : 

70 + 80 + 120 + 130 __ 1 __ 1 
4 = 100 is also xold + 4(b4 - Xold) = 90 + 4(40). 

The update from 999 to 1000 measurements shows the "gain matrix" 10
1
00 in a Kalman 

filter multiplying the prediction error bnew - Xold· Notice 10
1
00 = 9~9 - 999~00: 

X = b 1 + ... + b 1000 = bi + ... + b999 _1_ (b _ b1 + ... + b999 ) 

new 1000 999 + 1000 1000 999 . 

Problem Set 4.2 

Questions 1-9 ask for projections onto lines. Also errors e = b - P and matrices P. 

1 Project the vector b onto the line through a. Check that e is perpendicular to a: 

(a) b = Uland a = m (b) b = m and a = [ ~ l 
2 Draw the projection of b onto a and also compute it from P = xa: 

(b) b = [!] and a = [_!] . 
3 In Problem 1, find the projection matrix P = aaTjaTa onto the line through each 

vector a. Verify in both cases that p2 = P. Multiply P b in each case to compute 
the projection p. 

4 Construct the projection matrices PI and P2 onto the lines through the a's in Prob­
lem 2. Is it true th~t (PI + P2)2 = PI + P2? This would be true if PI P2 = O. 

5 Compute the projection matrices aa Tj a T a onto the lines through a 1 = (-1, 2, 2) and 
a2 = (2,2, -1). Multiply those projection matrices and explain why their product 
PI P2 is what it is. 

6 Project b = (1,0,0) onto the lines through a 1 and a2 in Problem 5 and also onto 
a3 = (2, -1, 2). Add up the three projections PI + P2 + P3' 

7 Continuing Problems 5-6, find the projection matrix P3 onto a3 = (2, -1, 2). Verify 
that PI + P2 + P3 = I. The basis ai, a2, a3 is orthogonal! 

8 Project the vector b = (1,1) onto the lines through al = (1,0) and a2 = (1,2). 
Draw the projections PI and P2 and add PI + P2' The projections do not add to b 
because the a's are not orthogonal. 
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a3 = [-i] [-1] 
2 a1 = 2 

2 

a2 = [j] 
Questions 5-6-7 

a2 = [;] 

b = [~] 

al = [~] 

Questions 8-9-1 ° 
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9 In Problem 8, the projection of b onto the plane of a 1 and a2 will equal b. Find 
P = A(AT A)-l AT for A = [al a2] = [A~]' 

10 Project a1 = (1,0) onto a2 = (1,2). Then project the result back onto al. Draw 
these projections and multiply the projection matrices PI P2 : Is this a projection? 

Questions 11-20 ask for projections, and projection matrices, onto subspaces. 

11 Project b onto the column space of A by solving AT Ax = ATb and p = Ax: 

(a) A = [~ i] and b = m (b) A = [i nand b = m· 
Find e = b - p. It should be perpendicular to the columns of A. 

12 Compute the projection matrices PI and P2 onto the column spaces in Problem 11. 
Verify that Pib gives the first projection Pl' Also verify pi = P2 • 

13 (Quick and Recommended) Suppose A is the 4 by 4 identity matrix with its last 
column removed. A is 4 by 3. Project b = (1,2,3,4) onto the column space of A. 

" 
What shape is the projection matrix P and what is P? 

14 Suppose b equals 2 times the first column of A. What is the projection of b onto 
the column space of A? Is P = I for sure in this case? Compute p and P when 
b = (0,2,4) and the columns of A are (0, 1,2) and (1,2,0). 

15 If A is doubled, then P = 2A(4AT A)-I2AT • This is the same as A(AT A)-l AT. The 
column space of 2A is the same as . Is x the same for A and 2A? 

16 What linear combination of (1,2, -1) and (1,0, 1) is closest to b = (2, 1, I)? 

17 (Important) If p 2 = P show that (I - p)2 = I - P. When P projects onto the 
column space of A, 1- P projects onto the __ 
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18 (a) If P is the 2 by 2 projection matrix onto the line through (1, 1), then 1 - P is 
the projection matrix onto __ 

(b) If P is the 3 by 3 projection matrix onto the line through (1,1,1), then 1 - P 
is the projection matrix onto __ 

19 To find the projection matrix onto the plane x - y - 2z = 0, choose two vectors in 
that plane and make them the columns of A. The plane should be the column space. 
Then compute P = A(AT A)-l AT. 

20 To find the projection matrix P onto the same plane x - y - 2z = 0, write down a 
vector e that is perpendicular to that plane. Compute the projection Q = e e Tj e T e 
and then P = 1 - Q. 

Questions 21-26 show that projection matrices satisfy p2 = P and pT = P. 

21 Multiply the matrix P = A(AT A)-l AT by itself. Cancel to prove that p 2 = P. 
Explain why P(Pb) always equals Pb: The vector Pb is in the column space so its 
projection is __ 

22 Prove that P = A(AT A)-l AT is symmetric by computing pT. Remember that the 
inverse of a symmetric matrix is symmetric. 

23 If A is square and invertible, the warning against splitting (AT A)-l does not apply. 
It is true that AA-1(AT)-1 AT = 1. When A is invertible, why is P = 1? What is 
the errore? 

24 The nullspace of AT is to the column space C(A). So if ATb = 0, the 
projection of b onto C(A) should be p = . Check that P = A(AT A)-l AT 
gives this answer. 

25 The projection matrix P onto an n-dimensional subspace has rank r n. 
Reason: The projections P b fill the subspace S. So S is the of P. 

26 If an m by m matrix has A 2 = A and its rank is m, prove that A = 1. 

27 The important fact that ends the section is this: If AT Ax = 0 then Ax = O. 
New Proof: The vector Ax is in the nullspace of . Ax is always in the column 
space of . To be in both of those perpendicular spaces, Ax must be zero. 

28 Use pT = P and p2 = P to prove that the length squared of column 2 always 
equals the diagonal entry P22 . This number is ~ = 3~ + 3~ + 3~ for 

P=! 2 2 2. [ 5 2 -1] 
6 -1 2 5 

29 If B has rank m (full row rank, independent rows) show that BBT is invertible. 
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Challenge Problems 

30 (a) Find the projection matrix Pc onto the column space of A (after looking closely 
at the matrix!) 

A=[3 6 6] 
488 

(b) Find the 3 by 3 projection matrix PR onto the row space of A. Multiply B = 
PCAPR. Your answer B should be a little surprising-can you explain it? 

31 In Rm, suppose I give you band p, and p is a combination of aI, ... , an. How 
would you test to see if p is the projection of b onto the subspace spanned by the 
a's? 

32 Suppose PI is the projection matrix onto the I-dimensional subspace spanned by 
the first column of A. Suppose P2 is the projection matrix onto the 2-dimensional 
column space of A. After thinking a little, compute the product P2 P1• 

33 PI and P2 are projections onto subspaces S and T. What is the requirement on 
those subspaces to have PI P2 = P2PI? 

34 If A has r independent columns and B has r independent rows, AB is invertible. 

Proof: When A is m by r with independent columns, we know that AT A is invertible. 
If B is r by n with independent rows, show that BBT is invertible. (Take A = BT.) 

Now show that AB has rank r. Hint: Why does AT ABBT have rank r? That matrix 
multiplication by AT and BT cannot increase the rank of AB, by Problem 3.6:26. 
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4.3 Least Squares Approximations 

It often happens that Ax = b has no solution. The usual reason is: too many equations. 
The matrix has more rows than columns. There are more equations than unknowns 
(m is greater than n). The n columns span a small part of m-dimensional space. Unless all 
measurements are perfect, b is outside that column space. Elimination reaches an 
impossible equation and stops. But we can't stop just because measurements include noise. 

To repeat: We cannot always get the error e = b - Ax down to zero. When e is zero, 
x is an exact solution to Ax = b. When the length of e is as small as possible, x is a 
least squares solution. Our goal in this section is to compute x and use it. These are real 
problems and they need an answer. 

The previous section emphasized p (the projection). This section emphasizes x (the 
least squares solution). They are connected by p = Ax. The fundamental equation is still 
AT Ax = AT b. Here is a short unofficial way to reach this equation: 

-;"~:e.·.:_n.' .••. '~_·~_j~_"_"'.:§"~~'!-~~'~$!li~,$~.iiij~ij~hii~rtiil~)'b. ;'Y~li{i~~;~;'~61~¢ AT Ax = AT b . 
• , i.·~,_ .'._. "-.. • _ _ 

Example 1 A crucial application of least squares is fitting a straight line to m points. 
Start with three points: Find the closest line to the points (0,6), (1,0), and (2,0). 

No straight line b = C + Dt goes through those three points. We are asking for two 
numbers C and D that satisfy three equations. Here are the equations at t = 0, 1,2 to 
match the given values b = 6,0,0: 

: ! E: =~~~~:~:O~n~A~1!:: b : ~ ~~~ if ~~~it~;l~";~= 
This 3 by 2 system has no solution: b = (6,0,0) is not a combination of the columns 
(1,1,1) and (0, 1,2). Read off A,x, andb from those equations: 

A = [: n x = [~J b = m Ax = b is no/solvable. 

The same numbers were in Example 3 in the last section. We computed x = (5, -3). 
Those numbers are the best C and D, so 5 - 3t will be the best line for the 3 points. 
We must connect projections to least squares, by explaining why AT Ax = ATb. 

In practical problems, there could easily be m = 100 points instead of m = 3. They 
don't exactly match any straight line C + Dt. Our numbers 6,0,0 exaggerate the error so 
you can see el, e2, and e3 in Figure 4.6. 

Minimizing the Error 

How do we make the error e = b - Ax as small as possible? This is an important question 
with a beautiful answer. The best x (called x) can be found by geometry or algebra or 
calculus: 90° angle or project using P or set the derivative of the error to zero. 
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By geometry Every Ax lies in the plane of the columns (1,1,1) and (0,1,2). In that 
plane, we look for the point closest to b. The nearest point is the projection p. 

The best choice for Ax is p. The smallest possible error is e = b - p. The three points at 
heights (PI, P2, P3) do lie on a line, because p is in the column space. In fitting a straight 
line, x gives the best choice for (C, D). 

By algebra Every vector b splits into two parts. The part in the column space is p. 
The perpendicular part in the nullspace of AT is e. There is an equation we cannot solve 
(Ax = b). There is an equation Ax = p we do solve (by removing e): 

Ax = b = p + e is impossible; Ax = p is solvable. (1) 

The solution to Ax = p leaves the least possible error (which is e): 

Squared length for any x (2) 

This is the law c2 = a2 + b2 for a right triangle. The vector Ax - p in the column space is 
perpendicular to e in the left nullspace. We reduce Ax - p to zero by choosing x to be x. 
That leaves the smallest possible error e = (el' e2, e3). 

Notice what "smallest" means. The squared length of Ax - b is minimized: 

The least squares solution x makes E = II A x - b 112 as small as possible. 

b l = 6 

PI = 5 

b 

b3 = ° 
'----""*""----"<-----Y e3 = 1 

t P3 =-1 

errors = vertical distances to line 

P=[jJ 
e = (1,-2,1) 

Figure 4.6: Best line and projection: 1\vo pictures, same problem. The line has heights 
p = (5,2, -1) with errors e = (1, -2,1). The equations AT Ax = ATb give x = (5, -3). 
The best line is b = 5 - 3t and the projection is p = 5al - 3a2. 

Figure 4.6a shows the closest line. It misses by distances el, e2, e3 = 1, -2,1. 
Those are vertical distances. The least squares line minimizes E = ef + e~ + e~. 
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Figure 4.6b shows the same problem in 3-dimensional space (b p e space). The vector 
b is not in the column space of A. That is why we could not solve Ax = b. No line goes 
through the three points. The smallest possible error is the perpendicular vector e. This is 
e = b - Ax, the vector of errors (1, -2,1) in the three equations. Those are the distances 
from the best line. Behind both figures is the fundamental equation AT Ax = AT b. 

Notice that the errors 1, -2, 1 add to zero. The error e = (el' e2, e3) is perpendicular 
to the first column (1, 1, 1) in A. The dot product gives el + e2 + e3 = o. 

By calculus Most functions are minimized by calculus! The graph bottoms out and the 
derivative in every direction is zero. Here the error function E to be minimized is a sum of 
squares er + e~ + e~ (the square of the error in each equation): 

The unknowns are C and D. With two unknowns there are two derivatives-both zero 
at the minimum. They are "partial derivatives" because aE/aC treats D as constant and 
aE / aD treats C as constant: 

aE/ac = 2(C + D ·0- 6) + 2(C + D • 1) + 2(C + D .2) = 0 

aE/aD = 2(C + D ·0- 6)(0) + 2(C + D • 1)(1) + 2(C + D .2)(2) = O. 

aE/aD contains the extra factors 0,1,2 from the chain rule. (The last derivative from 
(C + 2D)2 was 2 times C + 2D times that extra 2.) In the C derivative the corresponding 
factors are 1, I, I, because C is always multiplied by 1. It is no accident that 1, 1, 1 and 
0, 1,2 are the columns of A. 

Now cancel 2 from every term and collect all C's and all D's: 

The C derivative is zero: 3C + 3D = 6 
The D derivative is zero: 3C + 5D = 0 

Th" t" [3 3
5

] I"S ATA IS rna rlx 3 (4) 

These equations are identical with AT Ax = AT b. The best C and D are the components 
of x. The equations from calculus are the same as the "normal equations" from linear 
algebra. These are the key equations of least squares: 

"Th¢p4iti{Jltleriv{Jtives()FIIA~·.·--·bn2.areiero.·when .. A}'Ax .. ~····ATb.·.·· 

The solution is C = 5 and D = -3. Therefore b = 5 - 3t is the best line-it comes 
closest to the three points. At t = 0, 1, 2 this line goes through p = 5, 2, -1. 
It could not go through b = 6,0, o. The errors are 1, -2, 1. This is the vector e! 

The Big Picture 

The key figure of this book shows the four subspaces and the true action of a matrix. The 
vector x on the left side of Figure 4.3 went to b = Ax on the right side. In that figure x 
was split into x r + X n. There were many solutions to Ax = b. 
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row space 
is Rn 

best x 

o 
Independent columns 
Nullspace = {O} 
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p is in the column space 
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,­,-

column space 
inside Rm 

Ax = b ,-'-
----------------~ 

not solvable \ b = p + e 
b not in the column space \ 

\ 
\ 

\ 

e 
nullspace 

of AT 

Figure 4.7: The projection p = Ax is closest to b, so x minimizes E = lib - Ax 112. 

In this section the situation is just the opposite. There are no solutions to Ax = b. 
Instead of splitting up x we are splitting up b. Figure 4.3 shows the big picture for least 
squares. Instead of Ax = b we solve Ax = p. The error e = b - p is unavoidable. 

Notice how the nullspace N (A) is very small-just one point. With independent 
columns, the only solution to Ax = 0 is x = O. Then AT A is invertible. The equation 
AT Ax = ATb fully determines the best vector X. The error has ATe = O. 

Chapter 7 will have the complete picture-all four subspaces included. Every x splits 
into x r + X n, and every b splits into p + e. The best solution is X r in the row space. We 
can't help e and we don't want xn-this leaves Ax = p. 

Fitting a Straight Line 

Fitting a line is the clearest application of least squares. It starts with m > 2 points, 
hopefully near a straight lin~. At times tl,"" tm those m points are at heights 
hI, ... ,hm . The best line C + Dt misses the points by vertical distances eI, ... ,em, 

No line is perfect, and the least squares line minimizes E = ei + ... + e~. 
The first example in this section had three points in Figure 4.6. Now we allow m points 

(and m can be large). The two components of x are still C and D. 
A line goes through the m points when we exactly solve Ax = b. Generally we can't 

do it. Two unknowns C and D determine a line, so A has only n = 2 columns. To fit the 
m points, we are trying to solve m equations (and we only want two!): 

C + Dtl = hI I tl 

C + Dt2 = h2 I t2 
Ax = b is with A= (5) 

C + Dtm = hm 1 tm 
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The column space is so thin that almost certainly b is outside of it. When b happens to lie 
in the column space, the points happen to lie on a line. In that case b = p. Then Ax = b 
is solvable and the errors are e = (0, ... ,0). 

The closest line C + Dt has heights PI, ... 'Pm with errors eb ... ,em, 

Solve AT Ax = ATb/orx = (C, D). The errors are ei = bi - C - Dti. 

Fitting points by a straight line is so important that we give the two equations AT Ax = 
ATb, once and for all. The two columns of A are independent (unless all times ti are the 
same). So we tum to least squares and solve AT Ax = ATb. 

t~] [: t~] = [;Ii 
I tm 

Dot-product matrix AT A = [tIl (6) 

On the right side of the normal equation is the 2 by I vector AT b: 

(7) 

In a specific problem, these numbers are given. The best x = (C, D) is in equation (9). 

The vertical errors at the m points on the line are the components of e = b - p. This 
error vector (the residual) b - Ax is perpendicular to the columns of A (geometry). The 
error is in the nullspace df AT (linear algebra). The best x = (C, D) minimizes the total 
error E, the sum of squares: 

When calculus sets the derivatives fJE/fJC and fJE/fJD to zero, it produces AT Ax = ATb. 
Other least squares problems have more than two unknowns. Fitting by the best parabola 

has n = 3 coefficients C, D, E (see below). In general we are fitting m data points 
by n parameters Xl, • .. ,Xn . The matrix A has n columns and n < m. The derivatives 
of II Ax - b" 2 give the n equations AT Ax = AT b. The derivative of a square is linear. 
This is why the method of least squares is so popular. 

Example 2 A has orthogonal columns when the measurement times ti add to zero. 
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Suppose b = 1,2,4 at times t = -2,0,2. Those times add to zero. The columns of A 
have zero dot product: 

C + D(-2) = 1 
C + D(O) = 2 
C + D(2) = 4 

Look at the zeros in AT A: 

or 

is [~ ~] [~] = [~] . 
Main point: Now AT A is diagonal. We can solve separately for C = ~ and D = ~. The 
zeros in AT A are dot products of perpendicular columns in A. The diagonal matrix AT A, 
with entries m = 3 and t'f + ti + tl = 8, is virtually as good as the identity matrix. 

Orthogonal columns are so helpful that it is worth moving the time origin to produce 
them. To do that, subtract away the average time t = (tl + ... + tm ) / m. The shifted times 
1i = t; - t add to L 1i = mt - mt = O. With the columns now orthogonal, AT A is 
diagonal. Its entries are m and Tf + ... + T;;. The best C and D have direct formulas: 

Tist-t C = _bl_+_·_· ._+_bm_ 

m 
and (9) 

The best line is C + DT or C + D(t - t). The time shift that makes AT A diagonal is an 
example of the Gram-Schmidt process: orthogonalize the columns in advance. 

Fitting by a Parabola 

If we throw a ball, it would be crazy to fit the path by a straight line. A parabola b = 
C + D t + E t 2 allows the ball to go up and come down again (b is the height at time t). 
The actual path is not a perfect parabola, but the whole theory of projectiles starts with that 
approximation. 

When Galileo dropped a stone from the Leaning Tower of Pisa, it accelerated. 
The distance contains a quadratic term ~gt2. (Galileo's point was that the stone's mass 
is not involved.) Without that, t 2 term we could never send a satellite into the right or­
bit. But even with a nonlinear function like t 2 , the unknowns C, D, E appear linearly! 
Choosing the best parabola is still a problem in linear algebra. 

Problem Fit heights bi. ... ,bm at times tb ... ,tm by a parabola C + Dt + Et2 . 

Solution With m > 3 points, the m equations for an exact fit are generally unsolvable: 

C + Dtl + Etl = hI 

has the m by 3 matrix 
A = [t :~ 

C + Dtm + Et~ = bm 

Least squares The closest parabola C + Dt + Et2 chooses x 
satisfy the three normal equations AT Ax = AT h. 

(10) 

(C, D, E) to 
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May I ask you to convert this to a problem of projection? The column space of A has 
dimension . The projection of b is p = Ax, which combines the three columns 
using the coefficients C, D, E. The error at the first data point is e 1 = b 1 - C - D t 1 - E t f. 
The total squared error is ei + . If you prefer to minimize by calculus, take the 
partial derivatives of E with respect to . These three derivatives will 
be zero when x = (C, D, E) solves the 3 by 3 system of equations __ 

Section 8.5 has more least squares applications. The big one is Fourier series­
approximating functions instead of vectors. The function to be minimized changes from a 
sum of squared errors ei + ... + e; to an integral of the squared en·or. 

Example 3 For a parabola b = C + Dt + Et 2 to go through the three heights b = 6,0,0 
when t = 0, 1,2, the equations are 

C + D . 0 + E • 02 = 6 

C+D.I+E.1 2 =0 

C + D • 2 + E . 22 = O. 

(11) 

This is Ax = b. We can solve it exactly. Three data points give three equations and a 
square matrix. The solution is x = (C, D, E) = (6, -9, 3). The parabola through the 
three points in Figure 4.8a is b = 6 - 9t + 3t2 . 

What does this mean for projection? The matrix has three columns, which span the 
whole space R 3 . The projection matrix is the identity. The projection of b is b. The error 
is zero. We didn't need AT Ax = ATb, because we solved Ax = b. Of course we could 
multiply by AT, but there is no reason to do it. 

Figure 4.8 also shows a fourth point b4 at time t4. If that falls on the parabola, the new 
Ax = b (four equations) is still solvable. When the fourth point is not on the parabola, we 
tum to AT Ax = ATb. Will the least squares parabola stay the same, with all the error at 
the fourth point? Not likely! 

The smallest error vector (e 1, e2, e3, e4) is perpendicular to (1, 1, 1, 1), the first column 
of A. Least squares balances out the four errors, and they add to zero. 

6 

b = 6 - 9t + 3t 2 

O'---+--...-----~-t 

Figure 4.8: From Example 3: An exact fit of the parabola at t = 0, I, 2 means that p = b 
and e = O. The point b4 off the parabola makes In > n and we need least squares. 
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• REVIEW OF THE KEY IDEAS • 

1. The least squares solution x minimizes E = II Ax - b 112. This is the sum of squares 
of the errors in the m equations (m > n). 

2. The best x comes from the normal equations AT Ax = AT b. 

3. To fit m points by a line b = e + D t , the normal equations give C and D. 

4. The heights of the best line are p = (PI, ... , Pm). The vertical distances to the data 
points are the errors e = (eI' ... ,em)' 

5. If we try to fit m points by a combination of n < m functions, the m equations 
Ax = b are generally unsolvable. The n equations AT Ax = ATb give the least 
squares solution-the combination with smallest MSE (mean square error). 

• WORKED EXAMPLES • 

4.3 A Start with nine measurements bi to b9 , all zero, at times t = 1, ... ,9. The 
tenth measurement blO = 40 is an outlier. Find the best horizontal line y = e to fit 
the ten points (1,0), (2,0), ... , (9,0), (10,40) using three measures for the error E: 

(1) Least squares E2 = er + ... + ero (then the normal equation for e is linear) 

(2) Least maximum error Eoo = lemax I (3) Least sum of errors E I = leI I + ... + IelO I· 

Solution (1) The least squares fit to 0,0, ... ,0,40 by a horizontal line is e = 4: 

A = column of I's AT A = 10 ATb = sum of bi = 40. So lOe = 40. 

(2) The least maximum error requires e = 20, halfway between 0 and 40. 

(3) The least sum requires e = 0 (!!). The sum of errors 91 e I + 140 - e I would increase 
if e moves up from zero. 

The least sum comes from the median measurement (the median of 0, ... , 0, 40 is zero). 
Many statisticians feel that the least squares solution is too heavily influenced by outliers 
like blO = 40, and they prefer least sum. But the equations become nonlinear. 

Now find the least squares straight line e + D t through those ten points. 

Lti] [10 55] Ltl = 55 385 

Those come from equation (8). Then AT Ax = ATb gives e = -8 and D = 24/1l. 

What happens to e and D if you multiply the bi by 3 and then add 30 to get 
bnew = (30,30, ... , ISO)? Linearity allows us to rescale b = (0,0, ... ,40). MUltiplying 
b by 3 will multiply e and D by 3. Adding 30 to all bi will add 30 to e. 
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4.3 B Find the parabola C + Dt + Et 2 that comes closest (least squares error) to the val­
ues b = (0,0, 1,0,0) at the times t = -2, -1,0, 1,2. First write down the five equations 
Ax = b in three unknowns x = (C, D, E) for a parabola to go through the five points. No 
solution because no such parabola exists. Solve AT Ax = ATb. 

I would predict D = O. Why should the best parabola be symmetric around t = O? 
In AT Ax = ATb, equation 2 for D should uncouple from equations 1 and 3. 

Solution The five equations Ax = b have a rectangular "Vandermonde" matrix A: 

C + D(-2) + E(-2)2 
C + D (-1) + E (-1)2 
C + D (0) + E (0)2 
C + D (1) + E (1)2 
C + D (2) + E (2f 

- 0 
0 
1 
0 
0 

1 
1 

A= 1 
1 
1 

-2 4 
-1 1 

0 0 
1 1 
2 4 

Those zeros in AT A mean that column 2 of A is orthogonal to columns 1 and 3. We see this 
directly in A (the times -2, -1, 0,1,2 are symmetric). The best C, D, E in the parabola 
C + Dt + Et 2 come from AT Ax = ATb, and D is uncoupled: 

[ ~ ?O 1~] [ ; ] = [ ~] leads to 
10 0 34 E 0 

Problem Set 4.3 

C = 34/70 
D = 0 as predicted 
E = -10/70 

Problems 1-11 use four data points b = (0,8,8,20) to bring out the key ideas. 

1 With b = 0,8,8,20 at t = 0,1,3,4, set up and solve the normal equations 
AT Ax = AT b. For the best straight line in Figure 4.9a, find its four heights Pi 
and four errors ei. What is the minimum value E = er + e~ + e~ + e~? 

2 (Line C + Dt does go through p's) With b = 0,8,8,20 at times t = 0,1,3,4, 
write down the four equations Ax = b (unsolvable). Change the measurements to 
P = 1,5,13, 17 and find an exact solution to Ax = p. 

3 Check that e = b - p = (-1,3, -5, 3) is perpendicular to both columns of the 
same matrix A. What is the shortest distance lie II from b to the column space of A? 

4 (By calculus) Write down E = IIAx - bf as a sum of four squares-the last one 
is (C + 4D - 20)2. Find the derivative equations 8E/8C = 0 and 8E/8D = o. 
Divide by 2 to obtain the normal equations AT Ax = AT b. 

5 Find the height C of the best horizontal line to fit b = (0,8,8,20). An exact fit 
would solve the unsolvable equations C = 0, C = 8, C = 8, C = 20. Find the 
4 by 1 matrix A in these equations and solve AT Ax = ATb. Draw the horizontal line 
at height x = C and the four errors in e. 
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6 Projectb = (0,8,8,20) onto the line through a = (1,1,1,1). Findx=aTbjaTa 
and the projection p = xa. Check that e = b - P is perpendicular to a, and find the 
shortest distance II e II from b to the line through a. 

7 Find the closest line b = Dt, through the origin, to the same four points. An exact 
fit would solve D • 0 = 0, D • 1 = 8, D • 3 = 8, D • 4 = 20. Find the 4 by 1 matrix 
and solve AT Ax = ATb. Redraw Figure 4.9a showing the best line b = Dt and the 
e's. 

8 Project b = (0,8,8,20) onto the line through a = (0,1,3,4). Find x = D and 
p = xa. The best C in Problems 5-6 and the best D in Problems 7-8 do not agree 
with the best (C, D) in Problems 1-4. That is because (1, 1, 1, 1) and (0, 1,3,4) are 
__ perpendicular. 

9 For the closest parabola b = C + Dt + Et 2 to the same four points, write down the 
unsolvable equations Ax = b in three unknowns x = (C, D, E). Set up the three 
normal equations AT Ax = ATb (solution not required). In Figure 4.9a you are now 
fitting a parabola to 4 points-what is happening in Figure 4.9b? 

10 For the closest cubic b = C + Dt + Et 2 + Ft 3 to the same four points, write down 
the four equations Ax = b. Solve them by elimination. In Figure 4.9a this cubic 
now goes exactly through the points. What are p and e? 

11 The average of the four times is t = -1-(0 + 1 + 3 + 4) = 2. The average of the 

four b's is b = -1- (0 + 8 + 8 + 20) = 9. 

(a) Verify that the best line goes through the center point (t, b) = (2,9). 

(b) Explain why C + Dt = b comes from the first equation in AT Ax = AT b. 

PI e
l bI = 0 -.----t---j---+------i 

tl = 0 t2 = 1 t3 = 3 t4 = 4 

b = (0, 8, 8, 20) 
" " " e " 

" " /p=ca.+Da2 

a2 = (0,1,3,4) 

Figure 4.9: Problems 1-11: The closest line C + Dt matches Cal + Da2 in R4. 
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Questions 12-16 introduce basic ideas of statistics-the foundation for least squares. 

12 (Recommended) This problem projects b = (b I , •• . ,bm ) onto the line through a = 
(1, ... ,1). We solve m equations ax = b in 1 unknown (by least squares). 

(a) Solve aT ax = aT b to show that x is the mean (the average) of the b's. 

(b) Find e = b - ax and the variance lie 112 and the standard deviation II e II. 
(c) The horizontal line b = 3 is closest to b = (1,2,6). Check that p = (3,3,3) 

is perpendicular to e and find the 3 by 3 projection matrix P. 

13 First assumption behind least squares: Ax = b- (noise e with mean zero). Multiply 
the error vectors e = b - Ax by (AT A) -1 AT to get x - x on the right. The estimation 
errors x - x also average to zero. The estimate x is unbiased. 

14 Second assumption behind least squares: The m errors ei are independent with vari­
ance ()2, so the average of (b - Ax)(b - AX)T is ()2/. Multiply on the left by 
(AT A) -1 AT and on the right by A (AT A) -1 to show that the average matrix 
(x - x)(x - x)T is ()2(AT A)-I. This is the covariance matrix P in section 8.6. 

15 A doctor takes 4 readings of your heart rate. The best solution to x = b I , ... ,x = b4 

is the average x of b I , . .. ,b4 . The matrix A is a column of 1 'so Problem 14 gives 
the expected error (x - xf as ()2(AT A)-1 = . By averaging, the variance 
drops from ()2 to ()2 / 4. 

16 If you know the average X9 of 9 numbers b1 , ••• , b9, how can you quickly find the 
average XIO with one more number blO? The idea of recursive least squares is to 
avoid adding 10 numbers. What number multiplies X9 in computing x 10? 

XIO = 110blO + __ X9 = /0 (b1 + ... + blO ) as in Worked Example 4.2 C. 

Questions 17-24 give more practice with x and p and e. 

17 Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, 
b = 7 at t = 1, a!ld b = 21 at t = 2. Find the least squares solution x = (C, D) 
and draw the close'st line. 

18 Find the projection p = Ax in Problem 17. This gives the three heights of the closest 
line. Show that the error vector is e = (2, -6, 4). Why is P e = o? 

19 Suppose the measurements at t = -1,1,2 are the errors 2, -6, 4 in Problem 18. 
Compute x and the closest line to these new measurements. Explain the answer: 
b = (2, -6,4) is perpendicular to so the projection is p = o. 

20 Suppose the measurements at t = -1, 1, 2 are b = (5, 13, 17). Compute x and the 
closest line and e. The error is e = 0 because this b is __ 

21 Which of the four suhspaces contains the error vector e? Which contains p? Which 
contains x? What is the nullspace of A? 
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22 Find the best line C + Dt to fit b = 4,2, -1,0. ° at times t = -2. -1,0, 1, 2. 

23 Is the error vector e orthogonal to b or p or e or x? Show that lie 112 equals e Tb 
which equals b T b - P T b. This is the smallest total error E. 

24 The partial derivatives of IIAx 112 with respect to Xl, •.. ,Xn fill the vector 2AT Ax. 
The derivatives of 2b T Ax fill the vector 2AT b. So the derivatives of II Ax - b 112 are 
zero when __ 

Challenge Problems 

25 What condition on (tI, bd, (t2, b2). (t3, h) puts those three points onto a straight 
line? A column space answer is: (b l • b2 , b3 ) must be a combination of (1, 1, 1) and 
(tI, t2, t3). Try to reach a specific equation connecting the t's and b's. I should have 
thought of this question sooner! 

26 Find the plane that gives the best fit to the 4 values b = (0,1,3,4) at the comers 
(1,0) and (0, 1) and (-1.0) and (0, -1) of a square. The equations C + Dx + Ey = 
b at those 4 points are Ax = b with 3 unknowns x = (C, D, E). What is A? 
At the center (0,0) of the square, show that C + D X + E Y = average of the b's. 

27 (Distance between lines) The points P = (x, X, x) and Q = (y, 3 y, -1) are on two 
lines in space that don't meet. Choose x and y to minimize the squared distance 
II P - Q 112. The line connecting the closest P and Q is perpendicular to __ 

28 Suppose the columns of A are not independent. How could you find a matrix B so 
that P = B(BT B)-1 BT does give the projection onto the column space of A? (The 
usual formula will fail when AT A is not invertible.) 

29 Usually there will be exactly one hyperplane in Rn that contains the n given points 
x = 0, aI, ... ,an-I. (Example for n = 3: There will be one plane containing 
0, a I, a2 unless .) What is the test to have exactly one plane in Rn ? 
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4.4 Orthogonal Bases and Gram-Schmidt 

This section has two goals. The first is to see how orthogonality makes it easy to find x and 
p and P. Dot products are zero-so AT A becomes a diagonal matrix. The second goal 
is to construct orthogonal vectors. We will pick combinations of the original vectors to 
produce right angles. Those original vectors are the columns of A, probably not orthogonal. 
The orthogonal vectors will be the columns of a new matrix Q. 

From Chapter 3, a basis consists of independent vectors that span the space. 
The basis vectors could meet at any angle (except 0° and 180°). But every time we visu­
alize axes, they are perpendicular. In our imagination, the coordinate axes are practically 
always orthogonal. This simplifies the picture and it greatly simplifies the computations. 

The vectors q 1 ' ... , q n are orthogonal when their dot products q i • q j are zero. More 
exactly q T q j = 0 whenever i =f. j. With one more step--just divide each vector by its 
length-the vectors become orthogonal unit vectors. Their lengths are all 1. Then the 
basis is called orthonormal. 

The matrix Q is easy to work with because Q T Q = I. This repeats in matrix language 
that the columns q l' ... , q n are orthonormal. Q is not required to be square. 

When row i of Q T multiplies column j of Q, the dot product is q T q j. Off the diagonal 
(i =f. j) that dot product is zero by orthogonality. On the diagonal (i = j) the unit vectors 
giveqTqi = IIqil1 2 = 1. Often Q is rectangular (m > n). Sometimesm = n. 

When Q is square, QT Q = 1 means that QT = Q-l: transpose = inverse. 

If the columns are only orthogonal (not unit vectors), dot products still give a diagonal 
matrix (not the identity matrix). But this matrix is almost as good. The important thing is 
orthogonality-then it is easy to produce unit vectors. 
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To repeat: QT Q = I even when Q is rectangular. In that case QT is only an inverse 
from the left. For square matrices we also have Q QT = I, so QT is the two-sided in­
verse of Q. The rows of a square Q are orthonormal like the columns. The inverse is the 
transpose. In this square case we call Q an orthogonal matrix. l 

Here are three examples of orthogonal matrices-rotation and permutation and reflec­
tion. The quickest test is to check Q T Q = I. 

Example 1 (Rotation) Q rotates every vector in the plane clockwise by the angle e: 

Q _ [cose -Sine] ' .... y. :'.·.·.\a.·.:.·.:;\)·.·. QT _ Q-l _ [cose Sine] - ·'··an····: - -sine cos e····.· , -sine cos e '.' 

The columns of Q are orthogonal (take their dot product). They are unit vectors because 
sin2 e + cos2 e = 1. Those columns give an orthonormal basis for the plane R2. The 
standard basis vectors i and j are rotated through e (see Figure 4.1 Oa). Q -1 rotates vectors 
back through -e. It agrees with Q T, because the cosine of -e is the cosine of e, and 
sine-e) = - sin e. We have QT Q = I and Q QT = l. 

Example 2 (Permutation) These matrices change the order to (y, z, x) and (y, x): 

All columns of these Q's are unit vectors (their lengths are obviously 1). They are also 
orthogonal (the 1 's appear in different places). The inverse of a permutation matrix is its 
transpose. The inverse puts the components back into their original order: 

Inverse = transpose: [ ! ~ ~] U] = [n and [~ ~ ][ ~] = [~l 

f~"'~r~}~~:~!~~g~'ifjl~w!t·~~f:~VI!~~;~~~'!.~~c"!~tj#.:~ 
Example 3 (Reflection) If u is any unit vector, set Q = I - 2uu T. Notice that 
uu T is a matrix while u T u is the number II u 112 = 1. Then Q T and Q -1 both equal Q: 

(j:~,~;:';~.~::r;~~¥&;··?.';~~; and QTQ = I -4uuT +4UUTUUT = I. (2) 

Reflection matrices I - 2uu T are symmetric and also orthogonal. If you square them, you 
get the identity matrix: Q2 = QT Q = I. Reflecting twice through a mirror brings back 
the original. Notice u T u = 1 inside 4uu T UU T in equation (2). 

l"Orthonormal matrix" would have been a better name for Q, but it's not used. Any matrix with 
orthonormal columns has the letter Q, but we only call it an orthogonal matrix when it is square. 
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j Qi =j 

Q . = [- sin ()] 
J cos () 

, 
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mirror 

() 
Qi = [c~s(}] 
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_----''--'-- i .. /---__ Qj = i 
/ 

/ 

Figure 4.10: Rotation by Q = [~ -~ ] and reflection across 45° by Q = [~ ~]. 

As examples choose two unit vectors, U = (1,0) and then U = (1/../2, -1/ ../2). 
Compute 2uu T (column times row) and subtract from I to get reflections Q 1 and Q2: 

Q 1 reflects (x, 0) across the y axis to (-x, 0). Every vector (x, y) goes into its image 
( -x, y), and the y axis is the mirror. Q 2 is reflection across the 45° line: 

Reflections [-0
1 

When (x, y) goes to (y, x), a vector like (3, 3) doesn't move. It is on the mirror line. 
Figure 4. lOb shows the 45° mirror. 

Rotations preserve the length of a vector. So do reflections. So do permutations. So 
does multiplication by any orthogonal matrix-lengths and angles don't change. 

;f£ji2./6a~i~l!t!J~~,~~ill;~~tit;f,:m;,(,€tiwr~: ... ·· .. · ....... i~,sit.:l~(lvps·"Wl{gths·unCh(l,jg~d:< .. ·,·'·····" 
:-.".,-.-:.,',"'-",:'_'" ."" ~'-'-.-",' -:-,,:,.;, ":-::.">.:'::-'/\' ::.::.';,' ~,;':",:.J, "'~'·"."",-,~_"<'·-;,·r ,.,-'. . ","', ',.,:'" ", :--. ".\< ';"'~'" '- _ -',\.:-'< ,,",.,.,\',:,",- ' .- ,;" '.( ,--. ,'. -':':: '" -'. ,', -"'c.~' 
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Proof II Q x 112 equals II x 112 because (Q x ) T (Q x ) = X T Q T Q x = X T I x = X T X • 

Orthogonal matrices are excellent for computations-numbers can never grow too large 
when lengths of vectors are fixed. Stable computer codes use Q's as much as possible. 

Projections Using Orthogonal Bases: Q Replaces A 

This chapter is about projections onto subspaces. We developed the equations for x and 
p and the matrix P. When the columns of A were a basis for the subspace, all formulas 
involved AT A. The entries of AT A are the dot products aja j. 
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Suppose the basis vectors are actually orthonormal. The a's become q's. Then AT A 
simplifies to QT Q = I. Look at the improvements in x and P and P. Instead of QT Q we 
print a blank for the identity matrix: 

(4) 

The least squares solution of Qx = b is x = QTb. The projection matrix is P = Q QT. 

There are no matrices to invert. This is the point of an orthonormal basis. The best x = 
Q T b just has dot products of q 1 , .•. , q n with b. We have n I-dimensional projections! 
The "coupling matrix" or "correlation matrix" AT A is now QT Q = I. There is no cou­
pling. When A is Q, with orthonormal columns, here is P = Qx = QQTb: 

Projection 
onto q's 

(5) 

Important case: When Q is square and m = n, the subspace is the whole space. Then 
Q T = Q -1 and x = Q T b is the same as x = Q -1 b. The solution is exact! The projection 
of b onto the whole space is b itself. In this case P = Q Q T = I. 

You may think that projection onto the whole space is not worth mentioning. But when 
P = b, our formula assembles b out of its I-dimensional projections. If q 1 ' ... , q n is an 
orthonormal basis for the whole space, so Q is square, then every b = Q QTb is the sum 
of its components along the q's: 

(6) 

That is Q QT = I. It is the foundation of Fourier series and all the great "transforms" of 
applied mathematics. They break vectors or functions into perpendicular pieces. Then by 
adding the pieces, the inverse transform puts the function back together. 

Example 4 The columns of this orthogonal Q are orthonormal vectors q 1 ' q 2' q 3: 

Q = ~ 2 -1 2 [-I' 2 2] 
3 2 2-1 

The separate projections of b = (0,0,1) onto ql and q2 and q3 are PI and P2 and P3: 

ql(qIb) = ~ql and q2(q1b) = ~q2 and q3(qjb) = -}q3' 

The sum of the first two is the projection of b onto the plane of q 1 and q 2. The sum of all 
three is the projection of b onto the whole space-which is b itself: 

Reconstruct 
b = PI + P2 + P3 
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The Gram-Schmidt Process 

The point of this section is that "orthogonal is good." Projections and least squares 
always involve AT A. When this matrix becomes QT Q = I, the inverse is no problem. 
The one-dimensional projections are uncoupled. The best x is Q T b (just n separate dot 
products). For this to be true, we had to say "If the vectors are orthonormal". 
Now wefind a way to create orthonormal vectors. 

Start with three independent vectors a, b, c. We intend to construct three orthogonal 
vectors A, B, e. Then (at the end is easiest) we divide A, B, e by their lengths. That 
produces three orthonormal vectors q 1 = A / II A II, q 2 = B / II B II, q 3 = e / II ell· 
Gram-Schmidt Begin by choosing A = a. This first direction is accepted. The next 
direction B must be perpendicular to A. Start with b and subtract its projection along A. 
This leaves the perpendicular part, which is the orthogonal vector B: 

First Gram-Schmidt step (7) 

A and B are orthogonal in Figure 4.11. Take the dot product with A to verify that AT B = 
AT b - AT b = O. This vector B is what we have called the error vector e, perpendicular 
to A. Notice that B in equation (7) is not zero (otherwise a and b would be dependent). 
The directions A and B are now set. 

The third direction starts with c. This is not a combination of A and B (because c is 
not a combination of a and b). But most likely c is not perpendicular to A and B. So 
subtract off its components in those two directions to get e: 

Next Gram-Schmidt step (8) 

e , 
q _ e , 

Subtract , 3 - nen c 
projection 
to get B Unit vectors B 

B , 
q _ B , 

I , I 2 - iiBii 
I -lp q _ A I 

I onto AB 1 - nAn 
plane 

A =a b 

Figure 4.11: First project b onto the line through a and find the orthogonal B as b - p. 
Then project c onto the A B plane and find e as c - p. Divide by II A II, II B II, II e II. 
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This is the one and only idea of the Gram-Schmidt process. Subtract from every new 
vector its projections in the directions already set. That idea is repeated at every step.2 

If we had a fourth vector d, we would subtract three projections onto A, B, C to get D. 
At the end, or immediately when each one is found, divide the orthogonal vectors A, B, 
C, D by their lengths. The resulting vectors q 1 ' q 2' q 3' q 4 are orthonormal. 

Example 5 Suppose the independent non-orthogonal vectors a, b, care 

a = H] and b = U] and c = Hl 
Then A = a has AT A = 2. Subtract from b its projection along A = (1, -1,0): 

First step 

Check: AT B = 0 as required. Now subtract two projections from c to get C: 

Next step 

Check: C = (1, 1, 1) is perpendicular to A and B. Finally convert A, B, C to unit vectors 
(length 1, orthonormal). The lengths of A, B, Care J2 and ,J6 and ,j3. Divide by those 
lengths, for an orthonormal basis: 

Usually A, B, C contain fractions. Almost always q 1 ' q 2' q 3 contain square roots. 

The Factorization A = QR 

We started with a matrix A, whose columns were a, b, c. We ended with a matrix Q, 
whose columns are q 1 ' q 2' q 3' How are those matrices related? Since the vectors a, b, c 
are combinations of the q's (and vice versa), there must be a third matrix connecting A 
to Q. This third matrix is the triangular R in A = QR. 

The first step was q 1 = a / II a II (other vectors not involved). The second step was 
equation (7), where b is a combination of A and B. At that stage C and q 3 were not 
involved. This non-involvement of later vectors is the key point of Gram-Schmidt: 

21 think Gram had the idea. 1 don't really know where Schmidt came in. 
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• The vectors a and A and q 1 are all along a single line. 

• The vectors a, b and A , Band q 1 ' q 2 are all in the same plane. 

• The vectors a, b, C and A, B, C and q l' q2' q3 are in one subspace (dimension 3). 

At every step ai, ... ,ak are combinations of q l' ... , q k' Later q's are not involved. 
The connecting matrix R is triangular, and we have A = QR: 

(9) 

A = QR is Gram-Schmidt in a nutshell. Multiply by QT to see why R = QT A. 

Here are the a's and q's from the example. The i, j entry of R = Q T A is row i of Q T 

times column j of A. This is the dot product of q i with a j: 

[ 
1 2 3] [1/ -Ji 1/ ~ 

A = -1 0 -3 = -I/v12 1/../6 1/ J3] [-Ji -Ji v'18] 1/ J3 0 ../6 -../6 = QR. 
o -2 3 0 -2/~ I/J3 0 0 J3 

The lengths of A, B, C are the numbers -Ji, ~, J3 on the diagonal of R. Because of the 
square roots, QR looks less beautiful than L U. Both factorizations are absolutely central 
to calculations in linear algebra. 

Any m by n matrix A with independent columns can be factored into QR. The m by 
n matrix Q has orthonormal columns, and the square matrix R is upper triangular with 
positive diagonal. We must not forget why this is useful for least squares: A T A equals 
RT QT QR = RT R. Th~ least squares equation AT Ax = ATb simplifies to Rx = QTb: 

'. 

Instead of solving Ax = b, which is impossible, we solve Rx = QTb by back substitu­
tion-which is very fast. ~he real cost is the mn2 multiplications in the Gram-Schmidt 
process, which are needed to construct the orthogonal Q and the triangular R. 

Below is an informal code. It executes equations (11) and (12), for k = 1 then k = 2 and 
eventually k = n. The last line of that code normalizes to unit vectors qj: 

Divide by length 
qj = unit vector 

rjj = (tv5)1/2 and qij= vij for i=I, ... ,m. 
1=1 ril 

(11) 
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The important lines subtract from v = a j its projection onto each q i : 

m 

rkj = LqikVij 
i=l 

and 

Starting from a, b, c = at, a2, a3 this code will construct q l' B, q2' C, q3: 
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(12) 

Equation (12) subtracts off projections as soon as the new vector q k is found. This 
change to "subtract one projection at a time" is called modified Gram-Schmidt. That is 
numerically more stable than equation (8) which subtracts all projections at once. 

for j = l:n 

v = A(:, j); 

for i = l:j-l ",.".' , 

," .;< 

To recover column j of A, undo the last step and the middle steps of the code: 
j-l 

R(j, j)qj = (v minus itsprojections) = (column j of A) - L R(i, j)qi . (13) 
" i=l 

Moving the sum to the far left, this is column j in the multiplication A = QR. 

Confession Good software like LAPACK, used in good systems like MATLAB and 
Octave and Python, will not use this Gram-Schmidt code. There is now a better way. 
"Householder reflections" produce the upper triangular R, one column at a time, exactly as 
elimination produces the upper triangular U. 

Those reflection matrices I - 2uu T will be described in Chapter 9 on numerical linear 
algebra. If A is tridiagonal we can simplify even more to use 2 by 2 rotations. The result 
is always A = QR and the MATLAB command is [Q, R] = qr(A). I believe that Gram­
Schmidt is still the good process to understand, even if the reflections or rotations lead to a 
more perfect Q. 
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• REVIEW OF THE KEY IDEAS • 

1. If the orthonormal vectors q 1 ' ... , q n are the columns of Q, then q T q j = ° and 
q T q i = 1 translate into Q T Q = I. 

2. If Q is square (an orthogonal matrix) then QT = Q-I: transpose = inverse. 

3. The length of Q x equals the length of x: II Q x II = II x II. 

4. The projection onto the column space spanned by the q's is P = Q QT. 

5. If Q is square then P = I and every b = q 1 (q I b) + ... + q n (q ~b). 

6. Gram-Schmidt produces orthonormal vectors q 1 , q 2' q 3 from independent a, b, c. 
In matrix form this is the factorization A = QR = (orthogonal Q)(triangular R). 

• WORKED EXAMPLES • 

4.4 A Add two more columns with all entries I or -1, so the columns of this 4 by 4 
"Hadamard matrix" are orthogonal. How do you tum H4 into an orthogonal matrix Q? 

I 1 x x 
1 -1 x x 
I 1 x x 
1 -1 x x 

and 

The block matrix Hs = [Z: -Z:] is the next Hadamard matrix with 1 's and -I 'so 
What is the product Hi Hs? 

The projection of b = (6,0,0,2) onto the first column of H4 is PI = (2,2,2,2). The 
projection onto the secQnd column is P2 = (1, -1,1, -1). What is the projection PI,2 of 
b onto the 2-dimensioml.l space spanned by the first two columns? 

Solution H4 can be built from H2 just as Hs is built from H4 : 

I 1 1 1 
I -1 1-1 
1 1 -1 -1 
1 -1 -1 1 

has orthogonal columns. 

Then Q = H /2 has orthonormal columns. Dividing by 2 gives unit vectors in Q. Orthog­
onality for 5 by 5 is impossible because the dot product of columns would have five l's 
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and/or -1 's and could not add to zero. H g has orthogonal columns of length ..j8. 

T [HT HT] [H H] [2HT H 0] [81 
Hg Hg = HT _HT H -H = 0 2HT H = 0 

0] Hg 
81 . Qg = ..j8 

Key point of orthogonal columns: We can project (6,0,0,2) onto (1,1, 1, 1) and 
(1, -1, 1, -1) and add. There is no AT A matrix to invert: 

Add p's Projection PI,2 = PI + P2 = (2,2,2,2) + (1, -1,1, -1) = (3,1,3,1). 

Check that columns a I and a2 of H are perpendicular to the error e = b - PI - P2: 

and also ai'e = O. 

So PI + P2 is in the space of al and a2, and its error e is perpendicular to that space. 
The Gram-Schmidt process on those orthogonal columns a I and a2 would not change 

their directions. It would only divide by their lengths. But if al and a2 are not orthogonal, 
the projection PI,2 is not generally PI + P2' For example, if b is the same as aI, then 
PI = band Pl,2 = b but P2 =f:. O. 

Problem Set 4.4 

Problems 1-12 are about orthogonal vectors and orthogonal matrices. 

1 Are these pairs of vectors orthonormal or only orthogonal or only independent? 

(c) [ C?S 0 ] and [- sin 0 ] . 
smO cosO 

Change the second vector when necessary to produce orthonormal vectors. 

2 The vectors (2,2, -1) and (-1,2,2) are orthogonal. Divide them by their lengths to 
find orthonormal vectors' q I and q 2' Put those into the columns of Q and mUltiply 
QTQ and QQT. 

3 (a) If A has three orthogonal columns each oflength 4, what is AT A? 

(b) If A has three orthogonal columns of lengths 1,2, 3, what is AT A? 

4 Give an example of each of the following: 

(a) A matrix Q that has orthonormal columns but Q QT =f:. I. 

(b) Two orthogonal vectors that are not linearly independent. 

(c) An orthonormal basis for R3
, including the vector qi = (1, 1, 1)/ J3. 

5 Find two orthogonal vectors in the plane x + y + 2z = O. Make them orthonormal. 
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6 If Q 1 and Q 2 are orthogonal matrices, show that their product Q 1 Q 2 is also an 
orthogonal matrix. (Use QT Q = I.) 

7 If Q has orthonormal columns, what is the least squares solution x to Qx = b? 

8 If q 1 and q 2 are orthonormal vectors in RS
, what combination __ q 1 + --q 2 

is closest to a given vector b? 

9 (a) Compute P = QQT when ql = (.8, .6,0) and q2 = (-.6, .8,0). Verify that 
p2 = P. 

(b) Prove that always (Q QTf = Q QT by using QT Q = I. Then P = Q QT is 
the projection matrix onto the column space of Q. 

10 Orthonormal vectors are automatically linearly independent. 

(a) Vector proof: When CI q 1 +C2q 2 +C3q 3 = 0, what dot product leads to CI = O? 
Similarly C2 = ° and C3 = 0. Thus the q's are independent. 

(b) Matrix proof: Show that Qx = 0 leads to x = O. Since Q may be rectangular, 
you can use QT but not Q-I. 

11 (a) Gram-Schmidt: Find orthonormal vectors ql and q2 in the plane spanned by 
a = (1,3,4,5,7) and b = (-6,6,8,0,8). 

(b) Which vector in this plane is closest to (1,0,0,0, o)? 

12 If aI, a2, a3 is a basis for R3
, any vector b can be written as 

or 

(a) Suppose the a's are orthonormal. Show that Xl = alb. 

(b) Suppose the a's are orthogonal. Show that Xl = a I h / a I a 1. 

(c) If the a 's ar~ independent, x 1 is the first component of __ times h. 

Problems 13-25 are about the Gram-Schmidt process and A = QR. 

13 What multiple of a = [~] should be subtracted from h = [~] to make the result B 
orthogonal to a? Sketch a figure to show a, h, and B. 

14 Complete the Gram-Schmidt process in Problem 13 by computing q 1 = a/ Iia II and 
q2 = B /IIB II and factoring into QR: 

[1 4] = [ ] [ila ll 
1 ° ql q2 ° 
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15 (a) Find orthonormal vectors q l' q 2' q 3 such that q l' q 2 span the column space of 

(b) Which of the four fundamental subspaces contains q 3 ? 

(c) Solve Ax = (1,2,7) by least squares. 

16 What multiple of a = (4,5,2,2) is closest to b = (1,2,0,0)? Find orthonormal 
vectors q 1 and q 2 in the plane of a and b. 

17 Find the projection of b onto the line through a: 

a = m and b = [n and P =? and e = b - p = ? 

Compute the orthonormal vectors q 1 = a / lIa II and q 2 = e / II e II· 

18 (Recommended) Find orthogonal vectors A, B, C by Gram-Schmidt from a, b, c: 

a = (1, -1, 0, 0) b = (0, 1, -1, 0) C = (0,0,1, -1). 

A , B, C and a, b, c are bases for the vectors perpendicular to d = (1, 1, 1, 1). 

19 If A = QR then AT A = RT R = triangular times triangular. 
Gram-Schmidt on A corresponds to elimination on AT A. The pivots for AT A must 
be the squares of diagonal entries of R. Find Q and R by Gram-Schmidt for this A: 

[-1 1] 
A = ~! and 

'. 
20 True or false (give an example in either case): 

(a) Q-I is an orthogonal matrix when Q is an orthogonal matrix. 

(b) If Q (3 by 2) has orthonormal columns then II Qx II always equals IIx II. 

21 Find an orthonormal basis for the column space of A: 

A= 

1 -2 

1 ° 
1 I 
1 3 

and b= 

-4 
-3 

3 

° 
Then compute the projection of b onto that column space. 

Jason
高亮

Jason
高亮

Jason
高亮
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22 Find orthogonal vectors A, B, C by Gram-Schmidt from 

a=[i] and 6=[-1] and c=m· 
23 Find q I ' q 2' q 3 (orthonormal) as combinations of a, h, c (independent columns). 

Then write A as QR: 

[
1 2 4] 

A= 0 0 5 . 
o 3 6 

24 (a) Find a basis for the subspace S in R4 spanned by all solutions of 

(b) Find a basis for the orthogonal complement S..l . 

(c) Find hI in Sand h2 in S..l so that hI + h2 = h = (1,1,1,1). 

25 If ad - be > 0, the entries in A = QR are 

Write A = QR when a, b, c, d = 2,1,1,1 and also 1,1,1,1. Which entry of R 
becomes zero when the columns are dependent and Gram-Schmidt breaks down? 

Problems 26-29 use the QR code in equations (11-12). It executes Gram-Schmidt. 

26 Show why C (found via C* in the steps after (12» is equal to C in equation (8). 

27 Equation (8) subtracts from c its components along A and B. Why not subtract the 
components along a and along h? 

28 Where are the mnZ, multiplications in equations (11) and (12)? 

29 Apply the MATLAB qr code to a = (2,2, -1), h = (0, -3, 3), c = (1,0,0). What 
are the q's? 

Problems 30-35 involve orthogonal matrices that are special. 

30 The first four wavelets are in the columns of this wavelet matrix W: 

W=~ 
2 

1 1 ./2 0 
1 1 -./2 0 
1 -1 0./2 
1 -1 0-./2 

What is special about the columns? Find the inverse wavelet transform W- l • 
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31 (a) Choose c so that Q is an orthogonal matrix: 

1 -1 -1 -1 

Q =c 
-1 1 -1 -1 
-1 -1 1 -1 
-1 -1 -1 1 

Project b = (1, 1, 1, 1) onto the first column. Then project b onto the plane of the 
first two columns. 

32 If u is a unit vector, then Q = I - 2uu T is a reflection matrix (Example 3). Find Ql 
from u = (0,1) and Q2 from u = (0, ,,[ij2, ,,[ij2). Draw the reflections when Ql 
and Q2 mUltiply the vectors (1,2) and (1, 1, 1). 

33 Find all matrices that are both orthogonal and lower triangular. 

34 Q = I - 2uuT is a reflection matrix when uTu = 1. Two reflections give Q2 = 1. 

(a) Show that Qu = -u. The mirror is perpendicular to u. 

(b) Find Qv when u T v = 0. The mirror contains v. It reflects to itself. 

Challenge Problems 

35 (MATLAB) Factor [Q, R] = qr(A) for A = eye(4) - diag([ 1 1 1]. -1). You 
are orthogonalizing the columns (1, -1,0,0) and (0, 1. -1,0) and (0,0, 1, -1) and 
(0,0,0, 1) of A. Can you scale the orthogonal columns of Q to get nice integer 
components? 

36 If A is m by n with rank n, qr(A) produces a square Q and zeros below R: 

The factors from MATLAB are (m by m)(m by n) 

The n columns of Q 1 are an orthonormal basis for which fundamental subspace? 
The m - n columns of Q 2 are an orthonormal basis for which fundamental subspace? 

37 We know that P = QQT is the projection onto the column space of Q(m by n). 
Now add another column a to produce A = [Q a]. What is the new orthonormal 
vector q from Gram-Schmidt: start with a, subtract ,divide by __ 

Jason
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